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Preface

The intent of this report is to examine the robustness character-

istics of a newly developed digital control law. This study will

hopefully give insight to the use of the Output Predictive Dead-Beat

Control law.

I wish to express my appreciation to my advisor, Professor J. Gary Reid

for his guidance, assistance and patience throughout the year. His

motivation and suggestions helped make this report as complete as

possible.

Finally, I would like to thank my typist, Cathy Motach, for her

excellent work and suggestions.
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APIT/GA/EEI79-3

Abstract

A new discrete control law C, is implemented and examined.

Robustness to noise and model errors of the control law as sample

rate varies is analyzed. This analysis is conducted while controlling

several different very lightly damped, single input/single output systems

which are representative of the flutter dynamics of the B-52E wing *

The control law performance is different at separate sample rates.

A distinct range of sample rates are found to have a better response

to noise than other sample rates. Another range is found to be more

robust when there exists an error in the models used to calculate the

closed loop control law. When these ranges of sample rates intersect,

)the robustness characteristics at those sample rates is found to be

good with respect to both noise and model mismatch.

As theoretically predictedIa -(e- a relationship between

condition number of the system Hankel matrix and robustness seems to

exist. Hence, these simulated results appear to validate the theoretical

results on robustness predicted by Reid, but on the other hand, these

simulated results indicate that the total analysis of frobustnesst is

a very complex issue and cannot, at this point, be totally predicted

by such a parameter as simple as the condition number of the Hankel

matrix.

C
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ROBUSTNESS STUDIES OF OUTPUT PREDICTIVE

DEAD-BEAT CONTROL FOR WING FLUTTER CONTROL APPLICATIONS

I Introduction

Background

The dead-beat control law for discrete systems is now well known

and understood. Simply stated, the dead-beat control law assigns the

discrete time closed loop eigenvalues to the origin. The states will

be brought precisely to rest (assuming no additional disturbances) in

no more than n (system order) discrete steps. Thus the dead-beat control

law has been treated as an eigenvalue/eigenvector assignment problem

(Ref 2, 4). The dead-beat control law anticipates the system response

by feeding back all of the system states.

Another approach for anticipation of the systems response is to

I actually predict the system output into the future. Then, using this

predicted output determine a control action which forces the predicted

output identically to rest and remain at rest with no further required

input. Output Predictive Dead-Beat Control (OPDEC) uses this approach

in the formulation of its control law.

In the formulation of OPDEC, there is no restriction on the

selection of the discrete sample rate. Theoretical analysis of OPDEC

produced an approach for selection of an optimal sample rate, which

might enhance the systems over-all robustness (Ref 4).

Objectives

This report is concerned with the verification of the robustness

properties, with respect to noise and model errors, of OPDEC, and not

with the underlying theory used in the formulation of the control law.

CA



The initial objectives of this report is to develop two programs for

g robustness verification. The first program finds the optimum sample

rate of a given system. The second program implements OPDEC in a

simulated closed loop ehvironment with noise and model mismatch.

After development of the programs and selection of a system to control,

verification of OPDEC is then performed. Such items as analysis of

robustness properties versus sample rate is a major objective. Checking

the robustness properties of OPDEC when using a nonminimum phase system

became another interesting area of concern. These objectives stated

above are the prime areas of investigation of this report.

Potential Applications

This thesis is to provide a basis for possible future digital

flight control applications of OPDEC. The OPDEC concept appears to be

a good candidate for digital flight control applications because of its

$"robustness" properties. This characteristic is desirable because of

dramatic changes in the B-52E's wing flutter dynamics with changing

flight conditions (altitude and airspeed). The mathmatical models that

describe the wing flutter dynamics of the B-52E (Ref 6) will be shown

later.

g2
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II Theory

L An important class of control problems is the so called "tracking

problem". The closed loop "tracking problem" roughly is the following.

For a given reference variable, find an input such that the controlled

system output follows or tracks the reference. A class of tracking

problems consist of those where the reference variable is a constant.

Such a problem is called the regulator problem (Ref 1: Ch 2).

With rapid development and miniaturization of digital computers,

their use in control systems has become very common. A discrete con-

troller that solves the regulator problem is the "dead-beat" controller.

The "dead-beat" controller drives any initial state to zero in (at most)

n steps, where n is the system order. The states, however, will not be

driven to zero if the output is driven to zero (Ref 4: Ch 13). The

output might have an unacceptable response between sample periods.

The Output Predictive "Dead-Beat" Controller (OPDEC) derived by

Reid (Ref 3) has an acceptable response between sample rates when the

output is driven to zero. The OPDEC control law will drive the output

from any initial point to zero in at most n discrete steps. Because of

the formulation, the output will also remain at zero unless disturbed.

This means the "states" of the system are actually driven to zero in

these n discrete steps. The needed sequence of control are obtained

from (Ref 3)

U(k) - -(0.,0., ,l)-Hl(k+nk-l)1)

k = O,1,2,...,n-1

where the output prediction vectors

-"' ____
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y(k+n/k-1) 1

y (k+n+l/k-1)

3 Y(k+n/k-l) -[(2)

y(k+2n-l/k-l1

elements is the output of the system at discrete times k+n, k+n+l ......

k+2n-l due to the system states at time k, or inputs up to time k-i,

and Hn is the discrete time Hankel matrix of size n. The Hankel uatrix,

shown below

h(l) h(2) ..... h(n)
h(2) h(3) ..... h(n+l)

Hn - h(3) h(4) ..... h(n+2) (3)

h(n) h(n+l)... h(2n-I

has only 2n-1 separate elements. This is helpful when trying to implement

OPDEC on a small computer. The components of Hn are the discrete impulse

response of the system to be controlled.

According to Reid (Ref 3) given a SISO system

i(t) - -x(t) + Bu(t) (4)

x(O) -o (5)

with sampled output (sample time T)

y(kT) - C*x(kT) (6)

that is completely observable and completely controllable, with a

discrete time model of the system (4)-(6) denoted as

x(k+l) - F.x(k) + G.u(k) (7)

x(o) - (8)

y(k) - C-x(k) (9)

( where

4
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F =AT (10)

( G (oTeAT.dr).B (11)

output can be driven to zero in n steps using OPDEC to control the

system.

The elements of the output prediction vector, Y(k+n/k-1), can be

found by

y(m/k-1) _ C.F1m-kx(k) (12)

or by the discrete conclution summation

y(m/k-1) ' h(-k+i).U(k-i) (13)

Since equation (12) can be used for prediction whether the open loop

system is stable or unstable, this thesis will use equation (11) for

output prediction. This will enhance future studies of OPDEC to

controlling unstable systems.

Everything that has been discussed so far has not severely limited

us in selection of the sample rate. The sample rate that minimizes the

condition number of the Hankel matrix yields controls with good magnitude

properties (Ref 4). This thesis is investigating if this same sample

rate will yield good robustness characteristics as compared to other

sample rates. This sample rate, in this report, is called the "optimal"

sample rate.

5S
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III Investisation

The investigation into the characteristics of OPDEC required two

FORTRAN programs to implement the algorithm (See Appendices A and B).

The first program implements a plot of the condition number versus the

sample rate. This plot is used to find the optimal sample rate for the

sampled data controller. This theoretical "optimum" occurs when the

reciprocal condition number is a maximum (Ref 3). To verify the existence

of an optimal sample rate with respect to robustness characteristics,

the optimal sample rate and selected other sample rates were then used

in the implementation of OPDEC.

The second program implements OPDEC and all the possible options

needed to investigate the actual closed loop robustness properties of

OPDEC (See Fig 1). This program is split into four general sections.

The part initializes the program by reading in the inputs and generation

of the initial state vector, x(o). Some of the inputs that are read in

are the true and perturbed state matrix equations, sample rate and logic

switches. The second part takes the state vector, x(k), and predicts

the output in the future. These predictions are put in a vector format,

y. This is done using either the true model as perturbed model according

to the switch one (SWl) logic value. The third part takes the predicted

output and uses the Hankel matrix, which it generates (Ref 3), to find

the input, U. The Rankel matrix can be created using the true model or

a perturbed model according to switch two's (SW2) logic value. The

fourth part takes the input, U, and state vector x(k), and updates the

state vector one sample time, x(k+l). Also, at this point, one can add

noise to the input before it is applied to the true system. Also one can

( add noise directly to the updated states, x(k+l), before they are used in

..... ..... ... ... .... ... . . .... .. . ..... ...... .. ... ... .. ... ...... . .. .. ....... . -
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the next prediction. The noise added in each case is a zero mean white

guassian noise with selectable average strength. The programs are

discussed in detail in appendix A and B.

Models

This thesis used basically two math models. These models will be

modified to help answer some basic robustness questions. The models

are both reduced order models of the B-52E wing flutter modes (Ref 6).

They both are very lightly damped. One is a fourth order system (Table 1)

and the other is a tenth order system (Table 2). Most of the analysis

was done on the fourth order system to save computer simulation time.

The tenth order system was mainly used to see effects of reduced order

models controlling larger systems.

TABLE I

4th Order SISO System

Open-loop transfer function

8611.7698

84+1.683+274.07582+279.096S+8611.7698

EIGENVALUES

-.55 + j 6.0
-.55 - j 6.0
-.25 + j 15.4
-.25 - j 15.4

,.. .
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TABLE 2

10th Order-SISO System

Open-loop transfer function

NUMERATOR

POLYNOMIAL ZEROS

(-6607. )S**9 .8112E-04) + J( .19443-01)
( .2970E+06)S**8 .8112E-04) + J( -. 1944E-01)

C-.2667E4.07)S**7 (-1.843 ) + J( 4.255 )
C .1405E+09)S**6 C-1.843 ) + J( -4.255 )

( .8689E+O8)S**5 ( 3.343 ) + J( -15.59 )
C .2036E+11)S**4 C 3.343 )+ J( 15.59 )
C .5901E+11)S**3 (-2.344 )+ J( 15.48 )
C .4132E+12)S**2 (-2.344 )+ J( -15.48 )
( .4475E+08)S**1 46.64 )+ J( 0.)
C .1561E+09)

DENOMINATOR

POLYNOMIAL POLES

( 1.000 )S**1O ( -. 9234E-03) + J( .6579E-01)
( 6.626 )S**9 ( -. 9234E-03) + J( -. 6579E-01)
C 948.6 )S**8 -. 6772 )+ J( -1.053 )
( 4540. )S**7 C-.6772 )+ J( 1.053 )
( .2910E406)S**6 C-.5446E-01) + J( 15.51 )
( .8712E4,06)S**5 C-.544iE-O1) + J( -15.51 )
C .2919E+08)S**4 C-1.917 )+ J( 16.84 )
( .3885E+08)S**3 C-1.917 )+ J( -16.84 )
( .4425E+08)S**2 C-.6631 )+ J( 20.15 )
( .2493E4+06)S**1 -. 6631 )+ J( -20.15 )
C .1907E+06)

Quesion tobe Addressed

The emaphasis of this thesis is to investigate robustness properties

of OPDKC with respect to model errors and noise addition. The obvious

question to ask is hov robust is OPDEC, and what factors enhance the

robustness properties of OPDEC. The Idea of an optimal sample rate

naturally raises the question of the existanie of an optima.. Since

the Hankel matrix is Instrumental In the selection of the optimum sample

rate and ia the usage of OPD3C, it would be Interesting to see what

senitivi~ties the lankel matrix has. It would also be Interesting to

examine the Issue of performance and robustness for mon-mialmum phase



systems. Controlling a system, with zeros in the right half plane,

in the past has been difficult.

Procedure and Results with 4th Order SISO System

The following results use the same basic fourth order math model

described previously. In some sections there has been modifications to

this basic system. These modifications were needed to answer some

specific questions and will be discussed in each section.

The system is assumed to start at a random initial state of

7.049

x(o) - 85.007

9.745

in phase variable coordinates. For convenience, this coordinate system

was selected and due to time considerations, this initial state was to

only initial starting point used. The open loop response of the system

from this initial state is shown in Figure 2.

Selection and Implementation of Sample Rates

The basic fourth order system was analyzed with the first program

(Appendix A). From this analysis of the reciprocal condition number

(See Fig 3) the optium sample rate occurs at T - .152, with a maximum

value of 1/K - .32356.

Besides this optima sample rate, it was desired to compare perfor-

mance at several other selected sample rates. An interesting sample

rate to look at is T - .231. This sample rae occurs at the relative

maximum of the second lobe. This ample rate was chosen to see if

relative optimization occurs. Two other sample rates chosen are .113

and .182. They were chosen because their condition numbers were the

mem as the sample rate of .231. This was done to see if the value of

10
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the condition, no matter where it occurs,, can be used to predict the

robustness of the system. Another sample rate chosen was .954

because it occurs at the relative maxinum of the last lobe. It was

chosen because its condition number is close to the value of the previous

three. The sample rates chosen, their reciprocal condition number and

their condition numbers are listed in Table 3. The next three sample

rates were chosen because of their small condition numbers. The sample

rates are .085, .214 and .5. The last three sample rates were chosen

because of their very small reciprocal condition numbers. The sample

rates are .04, .623 and .835. These choices of sample rates appear to

cover the broad range of the condition number and should provide enough

information for this study.

TABLE 3

SAMPLE RATES
CHOSEN 1/K K

.152 .32356 3.090

.231 .10646 9.392

.182 .10714 9.333

.113 .10664 9.377

.954 .09551 10.469

.085 .00925 108.101

.214 .00930 107.511

.5 .00931 107.366

.04 .0004160 2403.557

.623 .00003552 28151.568

.835 .000423 2363.574

The plots of the output predictive response and the sequence of

control inputs for selected sample rates are shown in Figures 4 thru 16.

These plots were generated using the true model in both prediction and

control phases and no noise added. Figures 4 and 5 are the output

11
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response and control inputs at the optimum sample rate (.152). The

output response and control inputs for sample rates of .113, .182 and

.231 are shown in Figures 6 and 7. The output response for sample rates

of .085, .214 and .5 are shown in Figure 8. The control inputs for

sample rates of .5 and .214 are shown in Figure 9. Due to the large

scale needed, the control inputs for the sample rate of .085 is shown

separate in Figure 10. The output response and control inputs for the

sample rate of .04 are shown in Figures 11 and 12. Looking at Figures

10 and 12, the control inputs for two "poorly conditioned" sample rates,

one notices the inputs getting larger as the reciprocal condition number

is getting smaller. This is what was expected from the theory (Ref 3).

Figures 13 and 14 are the output response and control inputs for the

sample rates of .623 and .954. The output response and control inputs

for the sample rate of .835 is shown in Figures 15 and 16.

Studying the Figures, one notices some trends. First, as the sample

time increases the output response starts fluctuating more. This is

because the sample rate is slower than the natural frequency of the

system and the system has more time to fluctuate. As the sample rate

gets small, the value of the control inputs increase. This is shown by

Figure 7. Thirdly, the condition number has some effect on the size of

the control inputs. When both small reciprocal condition numbers and

small sample rates combine, the control input becomes huge (Fig 12).

Notice the magnitude difference in control input required between sample

rate of .152 and .04. This is caused by the small time increment the

system has to achieve the dead-beat response. For the 4th order system,

the system comes to rest in 4 steps regardless of the sample rate. Thus

( with a high sample rate the system has to work much harder to drive the

states to zero in the four steps. This is the major cause of magnitude

difference.

14
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Effect of Noise

This section implements OPDEC with input and/or state noise added.

This is done for all the sample rates selected. The average strengths

of the noises added in either case (input noise or state noise) are

.5, 1.0, 1.5 and 2.0. The sampled output responses, for all selected

sample rates, fell into 3 categories. They are stable, conditionally

stable and unstable. Conditionally stable means the output is varying

around the final value and the output is never larger than it would be

when no noise is added. Each section has a table that consolidates the

output result.

Adding Input Noise

In this section, noise is added eleven times to the input while it

is being input into the true system. What one would expect is that as

the average value of the input noise is increased, the output response

would become worse. This can be seen in Fig 17 and 18 which have

three plots per figure at the same sample rate with different average

input noises. Table 4 shows the effects of input noise on the sampled

output at all the selected sample rates.
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TABLE 4

Output Responses With Input Noise Added

SAMPLE TIME SAMPLE TIME OF OUTPUT RESPONSE WITH INPUT
OF CONTROL INPUT NOISE NOISE STRENGTH OF 1/K

.5 1.0 1.5 2.0

.4 .0036 S S S S .000416

.085 .0077 S S S S .00925

.113 .0102 S S CS CS .10664

.152 .0138 CS CS CS CS .32356

.182 .0165 CS CS CS CS .10714

.214 .0194 CS CS CS CS .0093

.231 .021 CS CS CS CS .10646

.5 .0454 CS CS US US .00931

.623 .0566 US US US US .0000355

.835 .0759 CS CS US US .000423

.954 .0867 CS US US US .09551

S - STABLE

CS - CONDITIONALLY STABLE

US - UNSTABLE

From Table 4 and the control input plots in the previous section,

one notices a trend. It seems the effects of input noise depends upon

the magnitude of the control inputs. This can be seen in Fig 19 which

shows the sampled output with input noise added at sample rates of .085

and .182. The output response at the "poorer conditioned" sample rate

(.085) is better than the response at the sample rate of .182. This is

because of the magnitude difference between the respective control inputs.

It seems the larger the control the less sensitive the output response

is to input noise. It would then be expected that the output response

at the sample rate of .835, would be insensitive to input noise because

of its large inputs relative to the optimal sample rate (Fig 16).

Fig 20 is the output response with input noise added at a sample rate
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of .835. This shows that the effects of input noise on the output is

not solely determined by the relative magnitude of the control inputs

or the condition number before the addition of the noise. It shows

that the sample rate also effects the robustness of a system that has

input noise added. Fig 21 is an example of the control inputs with

input noise added, at a sample rate of .113 seconds.

Adding State Noise

In this section, noise was added to all the states after they had

been updated one sample step. This is a simplified simulation of the

influence of incorrect state estimation from a Kalman filter in the closed

loop controller. The addition of noise occurs just before the next

output prediction. What one would expect is when the average strength

of the noise is increased, the output response becomes worse. Fig 22,

23 and 24 each have three plots per figure at the same sample rate with

different average noises corrupting the states. These figures verify

our expectations. Table 5 shows the effects of state noise on the

sampled output at all the selected sample rates.
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TABLE 5

Output Responses With Noise Corruption of the States

CONTROL SAMPLE OUTPUT RESPONSE WITH STATE
TIME NOISE STRENGTHS OF 1/K

.5 1.0 1.5 2.0

.04 CS CS CS CS .000416

.085 S CS CS CS .00925

.113 S S CS CS .10664

.152 CS CS CS CS .32356

.182 CS CS CS CS .10714

.214 CS CS CS US .0093

.231 CS CS CS US .10646

.5 CS CS US US .00931

.623 CS US US US .0000355

.835 CS CS CS US .000423

.954 CS CS CS CS .09551

S - STABLE

CS - CONDITIONALLY STABLE

US - UNSTABLE

From Table 5, one notices that the stability of the output, when

noise is added to the states, is a function of sample rate. With faster

sample rates, the system is able to correct the error induced by the

state noise. The condition number is also a factor as seen in Fig 25.

The output associated with the "poorer conditioned" sample rate (.214)

is not as good as the output at the sample of .182. To best combat

state noise corruption, one would like to use OPDEC at a fast sample

rate that has a relatively good condition value. For the model used,

a sample rate of .113 seems to have the best results (Fig 22).

Input and State Noise Added

This section concerns itself with the addition of both input and

state noise. Looking at Tables 4 and 5, and trying to anticipate which
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sample rate would give the best output results when both input and

state noise is added, one would probably choose the following sample

rates of .04, .085, .113, .152, .182 and .231. After a multitude of

computer runs, implementing OPDEC with both noises added and at all the

selected sample rates, the expected sample rates show the best robustness.

Figures 26, 27, and 28 show the sampled output with both input and state

noise added, and as one expects, .113 is the most robust.

This section has investigated the best way to combat noise in a

system when using OPDEC for control. The conclusion appears to be, to

run the system at a fast sample rate that is also well conditioned. The

system seems to be able to correct the induced errors caused by noise

when it is at a faster sample rate. In effect the errors can be

"negated" before they significantly degrade the system response when

operating at the faster sample rate.

Effects of Model Mismatch

The program that implements OPDEC also has the option to use a

perturbed model. This perturbed model can be used in either the predic-

tion phase, control phase or both phases simultaneously. A mathmatical

model can only approximate a system's response, but this mathmatical

model is used to try and control the system. Since the model is in

error the controller must be able to cope with this error without causing

the system to go unstable. The perturbed model analysis in this section

tries to simulate these model mismatching errors. Using this perturbed

model analysis enables a person to see which phase (prediction or control)

is the most sensitive to model errors.

To generate the "perturbed model" the basic fourth order model

eigenvalues are shifted in the model versus the "true system". The

reasons for perturbing the eigenvalues instead of the fankel matrix

41
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perturbations are not well understood. These perturbed eigenvalues

are then used to create the perturbed model. Specifically, two perturbed

models are used in the section to demonstrate robustness characteristics

of OPDEC. The transfer function for the two perturbed systems are:

10% perturbat ion

+ 8474

S4+1. 66S3+314.1S2+360.6S+8474

EIGENVALUES

-.605 + j 5.4
-.605 + j 5.4
-.225 + j 16.94
-.225 + j 16.94

15% perturbation

+ 8285

Sd+l. 69S3+340 .6S2+408S+8285

EIGENVALUES

-.6325 + j 5.1
-.6325 - j 5.1
-.2125 + j 17.71
-.2125 - j 17.71

OPDEC's program was then implemented at all the selected sample

rates, using the perturbed model in the following fashion:

1. The perturbed model was used in the prediction phase and the

true model was used in the control phase. (False prediction,

true control)

2. The true model was used in the prediction phase and the

perturbed model was used in the control phase. (True prediction,

false control)

3. The perturbed model was used in both prediction and control

phase. (False prediction, false control)
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The sampled output responses, for all selected sample rates, were stable.

According to Reid (Ref 3) the norm of the difference between the

true Hankel matrix and the error Hankel matrix (E - Ht - He) gives an

indication of the stability of the output. Tables 7 and 8 show the

selected sample rates, the condition number, the norm of the true Hankel

matrix IlHtli, the norm of the difference between the true Hankel matrix

and the error Hankel matrix, HiEI, the norm of the E matrix divided by

the norm of the true Hankel matrix, and the condition number times this

value for the 10% and 15% error models used.

TABLE 6

10% Perturbed Model

DELT K llHtl ilEll IIEII/IlHtll K.JIEII/IiHtlI

.040 2403.555 .652 .078 .120 289.085

.085 108.102 1.562 .401 .257 27.754

.113 9.055 1.566 .553 .353 3.197

.152 3.091 1.718 .559 .325 1.006

.182 9.334 2.086 .937 .449 4.191

.214 107.511 2.366 1.121 .474 50.957

.231 9.393 2.406 .874 .363 3.412

.500 107.367 4.001 2.543 .635 68.227

.623 28151.136 2.012 2.941 1.462 41155.396

.835 2363.574 1.350 .911 .675 1594.370

.954 10.470 .836 .682 .816 8.543
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TABLE 7

15% Perturbed Model

DELT K IIHtl JlEll IIEI/IjHtlI K'll-lI/lIHtll

.040 2403.555 .625 .123 .189 454.633

.085 108.102 1.562 .566 .362 39.147

.113 9.055 1.566 .750 .479 4.336

.152 3.091 1.718 .750 .436 1.349

.182 9.334 2.086 1.226 .588 5.486

.214 107.511 2.366 1.287 .544 58.498

.231 9.393 2.406 1.288 .535 5.026

.500 107.367 4.001 3.589 .897 96.315

.623 28151.136 2.012 3.141 1.561 43943.039

.835 2363.574 1.350 1.104 .817 1932.136

.954 10.470 .836 .903 1.081 11.314

Looking at the tables, at the same sample rate the norm of E

increases as the amount of perturbation increases. If the norm of E

is less than one, the output response is suppose to be stable. This

section will try and verify this theoretical result by looking at the

output response at all of the sample rates selected using the perturbed

models and seeing if the output is stable or unstable. Table 8 shows

the effects which the 10% perturbed model has on the sampled output.

(
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TABLE 8

Output Responses With the 10% Perturbed Model

OUTPUT RESPONSE WITH

TRUE PREDICTION FALSE PREDICTION FALSE PREDICTION
SAMPLE RATE FALSE CONTROL TRUE CONTROL FALSE CONTROL

.04 S S S

.085 S S S

.113 S* S* S

.152 S S* S

.182 S* US S*

.214 US US US

.231 US US S

.5 US US US

.623 US US US

.835 us us us

.954 US US S

* The time needed to reach the final value was greater than 20 times

the sample rate used.

The output responses using the 10% perturbed model, for sample rates

of .04, .085, .113, and .152 are in Figs 29, 30, 31 and 32 respectively.

From these figures one can see that the prediction phase is more sensi-

tive than the control phase to model error. But what is really inter-

esting is the output response is better when the error model is used

in both prediction and control phases.

Table 9 shows the effects the 15% perturbed model has on the

sampled output.
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TABLE 9

Output Responses With 15% Perturbed Model

OUTPUT RESPONSES WITH

TRUE PREDICTION FALSE PREDICTION FALSE PREDICTION
SAMPLE RATE FALSE CONTROL TRUE CONTROL FALSE CONTROL

.04 S S S

.085 S S S

.113 US US S

.152 US US US

.182 US US US

.214 US US US

.231 US US US

.5 US US US

.623 US US US

.835 US US US

.954 US US US

S - STABLE

US - UNSTABLE

The models errors are almost too great to overcome when the perturb-

ation is 15%. The output responses using the 15% perturbed model for

sample rates of .085 and .113 are in Fig 33 and 34. These sample rates,

as predicted by Table 7, are stable. It seems that the norm of the

difference between the two Hankel matrix and the error Hankel matrix

if less than one indicates stability.

Combination of Noise and Model Errors

This section investigates the efforts of input and state noise

when erroneous models are used to control the system. OPDEC's program

was then implemented with the perturbed model used in both prediction

and control phases with just input noise, then just state noise, and

finally both input and state noise. The justification for implementing

OPDEC in this fashion is that one will not be using different models for
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the production phase as compared to the control phase. The same model

will be used in both phases.

OPDEC's program was implemented using the 10% perturbed model,

input noise was added first, then state noise, then the combination of

the two noises. This was done for all the sample rates selected, except

the sample rates which by Table 4 were unstable. Shown in Figures 35

and 36 is the sampled outputs using the 10% perturbed model with input

noise added. The sampled outputs with state noise added is shown in

Figures 37 and 38. The sampled outputs with both state and input noise

added can be seen in Figures 39 and 40.

As expected, the faster sample rates which have larger controls

are insensitive to input disturbances, but the addition of state noise

has a more severe effect on the output. The severity is great enough to

make the output response worse than the response at a sample rate of .113.

When using a perturbed model, the influence of state noise becomes more

severe. This is because of OPDEC's sensitivity in the prediction phase

of its control law.

Hankel Matrix Sensitivity Analysis

The use of OPDEC requires working with the Hankel matrix. Since

the Hankel matrix is such a vital part of OPDEC, the analysis of the

Hankel matrix under variations in the system pole/zero structure will

give some indication of the overall robustness of OPDEC. Not only is

the Hankel matrix an intrinsic part of control computation in OPDEC,

it is also an important part in the selection of an "optimal" sample

rate. The approach taken in this report is to see how sensitive the

Hankel matrix is to pole and zero placement.

First the dominate pair of eigenvalues in the fourth order system
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(-.25 + j 15.4) are perturbed slightly, then combined with the two other

original eigenvalues to come up with a new perturbed system. This system

is then used in the first FORTRAN program (Appendix A) to see the effects

which pole placement has upon the condition number. The resulting con-

dition number versus sample rate plot is then compared to the original

system condition number plot. The original system condition number plot

is again shown in Figure 41. Figure 42 and Table 10 show the perturbed

eigenvalues used in the sensitivity analysis. Table 10 also has the

optimal sample rate and one over condition number for each perturbed

eigenvalue.

TABLE 10

MAXIMUM RECIPROCAL
PERTURBED "OPTIMAL" CONDITION NUMBER @ DAMPING
EIGENVALUE SAMPLE RATE "OPTIMUM" SAMPLE RATE Wn RATIO

-.25 + j 15.4! .152 .32356 15.402 .016

-.25 + j 20 .118 .23109 20.001 .0125

-.25 + j 17.4 .136 .2881 17.401 .014

-.25 + J 12.7 .174 .2963 12.702 .019

-.25 + j 10.0$ .215 .21664 10.003 .024

-.05 + j 15.4 .151 .3581 15.4 .0006

-.15 + j 15.4 .152 .3399 15.4 .0097

-.35 + J 15.4 .152 .305 15.4 .0227

-.45 + j 15.4 .152 .2877 15.403 .0292

-.2 + j 12.32* .177 .2891 12.321 .016

-.3 + j 18.48* .128 .2585 18.482 .016

! The original system

* The perturbed system created using these eigenvalues has the
same damping ratio as the original system

$ Local optimal sample rate only; i.e., there is another peak

Looking at Figures 43 thru 52 one notices a trend appearing. When

the real part of the eigenvalue is perturbed and the imaginary part is

63



0

co.

C;

6-; 
a-

0

C-4

0

0

01,'0 390 tZ'O 91 "0 so"0 o-0
#N011LION03 N!3A 3NO

ONE OVER CONDITION NUINBER VS SRMPLE RSTE

64 Fig. 41



jw

"20

A

_/5

* I0

"2

* --Pertubed poles
X--Original system
A--Same damping ratio as original system 0
C-' -.6 -2 -.1 0

Perturbed Eigenvalues for
Sensitivity Analysis Fig. 42

65



a

64 0

I.- a I

U0 a

bAb

-I-

0

0

6-4

toI-

cE

CO

0

0

01' "0 a 0 tl0 91.0 8090 O0'

a NOIIIGN03 3A0 3No

ONE OVER CONOITION NUMBER VS SRMPLE RRTE
WITH DOMINANT POLES AT -. 25+JI0.

66 Fig. 43

.... ....



Cww. w

aO

to -j

0

0

0

36O 0$ 0 a;' 91 '0 solo 00 c€

# NOI.IONO3 3AO 3NO

ONE OVER CONDITION NUMBER VS S:IMLE RRTE
WITH DOMINANT POLES AT -.25 t j12.7

67 Fig. 4



0

0 U

a<

to

8.8 g

~ Cec;
hi ~ a i

0

ot.0 ze g t? 11 910 8010 o c0

N0111N03 NAC 3N

ONEOVE CODITON UMBR V SAPLERAT

WITHDOMIANT OLE AT .25 17.

.68 r g. 4



0

C;

= ha

, cc I.-

10 . al
dig C2

C U!

0

cLLJ

I-
:

0

9PaNo zo 10 8000 00 0
aNOIIIO0 83AC 3N0

ONE OVER CONDITION NUMBER VS SAMPLE RATE
WITH DOMINANT POLES AT - .25 ± J20

69 Fig. 4i6



0

W -b6
0 0

:m1:

co

a ~a:

S0 ,00

oto asate 10 00 0

NOIION03 N3AO 3NO

i0

ONE OVER CONDITION NUMBER VS SRMFL RATE
WITH DOMINANT POLES AT -. 05 ±+ j15-z

70 Fig. 47



0 *

C;LLI

LI

-0..

ot 10 ze 11 t~z 1o 9 00 8o 60 Do '
#NOI MONO3 NJ3/A 3NQ

... . J WJ ..

ONE OVER CONDITION NUMBER VS SAMPLE RATE
WITH DOMINANT POLES AT -. 15 :t j15.4

71 Pig. 48

8- k " '-'



0 09

*A. z I- C3

a -j

cJ00

CC

hii

hij

C

CL

oo

_-

a:

Ot 0G 380 k 09110 solo 001
aNOIIION03 N3A0 JNO

ONE OVER CONDITION NUMBER VS SAMPLE RATE
WITH DOMINANT POLES AT -. 35 + j15.4

72 Fig. I9



00

C4

a ' ,

o ~Go

ci( a a
~I I

C; 0

a..
hii w -t.J'

i

otoo ?ego ta'o 918o solo Do cp
#NOIUION03 N13A0 3NO

ONE OVER CONDITION NUMBER VS SAMPLE RATE
WITH DOMINANT POLES AT -.45 _+ j15.4

73 Fig. 50

z a ~ a



m0

w

o-

ac

LJ
to_ -

~ a:

0

C *3

#NOIIIGN03 N13A0 3NO

• ( ONE OVER CONDITIO3N NUMB8ER VS SAMPiLE RATE
WITH DOMINANT POLES AT -.2 + j12.32

Fig. 51 '74 .

Aft



)0
ba

am

oG

-

o- 0 00

C 03

#N0IIION03 N{3A0 3NO

ONE OVER CONDITION NUMBER VS SAMPLE RATE
WITH DOMINANT POLES AT -.3 +j18.48

75 Fig. 52

iT #



not, the effects upon the optimal sample rate is minimal. Conversely,

when the real part is not perturbed and the imaginary part is perturbed,

the shift of the optimal sample rate is considerable. This seems reason-

able because the frequency of a system is very dependent upon the

imaginary portion of the eigenvalues in a lightly damped system. This

analysis shows the Hankel matrix condition number being sensitive to

the frequency, Wn, of a system, but insensitive to the damping ratio of

a system.

The next area of concern is the effect a system zero would have on

the Hankel matrix. A system zero is added to the basic fourth order

system giving us a new system, shown below.

(S+-) 8611. 7698

S4+1.6S 3+274.075S2+279.096+8611.7698

Alpha is varied from one to minus one to see the sensitivities in

the Hankel matrix. Table 11 shows the optimum sample rate and the corre-

sponding reciprocal condition value for various values of alpha.

TABLE 11

"OPTIMAL" RECIPROCAL

ALPHA SAMPLE RATE CONDITION NUMBER

1.0 .147 .6234

.3 .156 .6336

.2 .156 .6352

0.0 .156 .6395

-.2 .156 .6438

-.3 .156 .6456

-1.0 .153 .6526

The original system condition number plot is again in Figure 53.

For alpha's of .3, 0.0, and -.3, plots of the reciprocal condition number

versus sample rate are shown in Figures 54, 55 and 56, respectively.
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The most obvious change is the value of the maximum reciprocal condition

number. The value has about doubled from .3 for the no zero system to .6

for the system with a zero. Also observed is that variation on the optimal

sample rate itself is very small and it changes very little as the zero

shifts, even when the zero is in the right half plane. The system is

then a nonminimum phase system, but there seems to be little influence

upon the characteristics of the conditioning of the Hankel matrix. If

anything, the maximum reciprocal condition number is increasing in

value as we proceed further into the right half plane! If the condition

numbers value is any indication of robustness, this indicates that a

system with a zero will be more robust than the same system without a

zero. From this analysis, using a lightly damped system, the Hankel

matrix is sensitive to the pole locations of the system, but it is

relatively insensitive to the location of the system zeros.

Minimum Phase versus Nonminimum Phase

This section examines whether or not a nonminimum phase system

will present any problems when being controlled by OPDEC. Two systems,

one being nonminimum phase, the other minimum phase, are implemented

under conditions of model errors and input and/or state noise. The

two systems are:

System A (Minimum Phase)

8611.7698(S+.3)

S4+1.6S 3+274.075S 2+279.096S+8611.7698

System B (Nonminimum Phase)

8611.7698(S-.3)

S4+1.6S3+274.075s2+279.096S+8611.7698
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From Table 11, both System A and B have an optimal sample rate of

.156 seconds. Their sampled outputs and control inputs at the optimal

sample is shown in Figures 57 and 58. Surprisingly, the sampled outputs

and control inputs are exactly the same for a minimum phase system and

a nonminimum phase system. This is caused by the zeros in both systems

having the same magnitude. Input noise, then state noise, and finally

input and state noise are added to the system. The sampled output with

input noise added at a sample rate of .156 can be seen in Figure 59.

Again the output is exactly the same for a nonminimum phase system as

for a minimum phase system. This fact is present when state noise is

added and also when both types of noises are added. Other sample rates

are tried and the outputs are identical for system A and B. Similar

to previous results, a faster than optimum sample rate gives better

robustness characteristics when noise is disrupting the system (Figures

60 and 61).

The next area of concern is if system A and system B have the same

properties when an error model is used for control. The two 10% perturbed

models are:

System A'

8474(S+.3)

S4+l.66S3+317.1S2+360.6S+8474

System B'

8474(S-.3)

S4+l.66S3+317.1S2+360.6S+8474

The denominator of the perturbed systems is the same as the previous 10%

perturbed models denominator used earlier in this report. The output

response and control inputs when using the perturbed models to control
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the true system are identical. Figure 62 shows the sampled outputs at

ample rates of .113 and .152 using this perturbed model.

From this analysis, OPDEC has no problems controlling a nonminimum

phase system. Also, the robustness of OPDEC is not degraded when this

type system is being controlled. OPDEC is fairly insensitive to zero

placement.

This insensitivity to the system zero location was interesting

enough to try and control system B using system A and A' as the perturbed

model. When system A was used, the output response looked exactly like

the original dead-beat response (Figure 57). When system A' was used,

the output response looked exactly like Figure 62. The next step was

to try and use the original fourth order SISO system with no zeros to

control system B. The systems response was unstable. What this analysis

shows is that the zero location is not a factor in using OPDEC as a

(regulator.

Discussion of 4th Order Results

From this fourth order analysis, we see that sample rates faster

than the optimum have better output characteristics when noise is

corrupting the system. Also, some of the faster sample rates seem to

have better robustness characteristics overall. The condition number

is a helpful guide in selecting general areas of sample rates where

the system is more robust. Using the condition number to find a

specific "optimal" sample rate, without doing the closed loop robustness

aLmlation studies, Is definitely the wrong approach. lobustness and

closed loop system performance Is just too complex of am issue to hope

that there would be a single panacea for all aspects of the problem.

Ares of big sensitivity of OIDC seen to be the poles of the

system being controlled, but OnUC appears to be lnsensitive to ystumt .
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zero location. As far as the location of the poles are concerned,

OPDEC is more sensitive to the "frequency" of the pole as compared to

(the damping ratio.

Procedure and Results with 10th Order SISO System

In this section, OPDEC is implemented using the 10th order system

discussed earlier. Figure 63 shows the reciprocal condition number

versus sample rate. The "optimum" sample rate is .523 and the reciprocal

condition number is 0.000158. The sampled output at a rate of .523 is

shown in Figure 64. The output is very oscillitory but, as the theory

states, in ten steps of the dead-beat control the output and the states

are brought identically to zero.

What was tried at this point was to control the 10th order system

with a smaller ordered system. The full ordered Hankel matrix was

created (10 X 10). Then an option was exercised in the program that

( lets the user reduce the size of the Hankel matrix just before it is

inverted for use in closed loop control. Then the reduced order Hankel

matrix is inverted and used to determine a control input using OPDEC's

control law. When trying to control the true 10th order system with a

9th order system the output for sample rate of .523 is shown in Figure 65.

For the same sample rate the order of the Hankel matrix was reduced to

an 8th order system. The sampled output can be seen in Figure 66.

Some other sample rates were chosen and the same procedure was used.

The outputs for all the other selected asple rates went unstable,

even for the 9th order system controlling the full 10th order system.

The condition umber s helpful in determining a sample rate In which

a reduced order model Is being used to determine control inputs.

V 0 qt71 _ _ _ _ 7
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IV Conclusions and Recommendations

From this analysis one can see that the sample rate can enhance

the robustness properties of OPDEC. The sample rate which minimizes

the condition number does yield controls with good magnitude properties.

If anything, this fact causes the response to be more sensitive to

input noise if the strength of the noise is held constant. Thus, the

so called optimum sample rate is not necessarily the same sample rate

that gives the best enhancement to OPDEC's robustness.

The group of sample rates which has good robustness properties

when input noise was the only disruptive element is not the same group

of ample rates that exhibit acceptable robustness when model mismatch

exists. This means that the overall characteristics of OPDEC can be

tailored for specific operating environments, by just selecting the

proper sample rate. The problem then becomes one of selection of

the proper sample rate to "tune" the algorithm for the particular set

of noise environment and model errors which is expected to be encountered.

There does not appear to be an analytic method for this proper sample rate.

Rather, the robustness performance appears to be an issue which is best

analyzed through simulation studies.

OPDEC's sensitivity to the frequency of the system and its opera-

ting sample rate could be caused from the selection of the system to

control. It is recommended that future studies see if OPDEC has the

same characteristics when implemented on other system, particularly on

those which are not so lightly damped as the one studied here. Another

area needing further investigation is in the optimization of sample rate.

The flexibility of OPDZC eem to make it a viable control technique.

95

wimp"I....



Bibliography

1. H. Kvakernaak and R. Sivan. Linear Optimal Control Systems.

New York: Wiley-Interscience, 1972.

2. R. E. Kalman, P. L. Falb, and H. A. Arbib. Topics in Mathematical

System Theory, McGraw-Hill, New York, 1969.

3. J. G. Reid, R. K. Mehra, and E. Kirkwood. "Robustness Properties

of Output Predictive Dead-Beat Control: SISO Case", Proceedings
1979 IEEE Conference on Decision and Control, Fort Lauderdale,

December 1979.

4. T. E. Fortmann and K. L. Hitz. An Introduction to Control Systems.

New York: Marcel Dekker, Inc., 1977.

5. Reid, J. G. Course notes for EE 5.10, Linear Systems Theory and

Digital Computation Methods. School of Engineering, Air Force
Institute of Technology, Wright-Patterson AFB, Ohio, October 1978.

6. Houpis, Constantine H. and G. B. Lamont. Lecture Notes on Digital
Control Systems/Information Processing. School of Engineering, Air

Force Institute of Technology, Wright-Patterson AFB, Ohio, December
1977.

Cl;

96

- - , ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ X 7.. ......J. .. _ . .. . ..
. . . . .. . .. ..... . . . . .... ... .. ... . ... .. -- --. . . . .,



Appendix A

VCondition Number Program

This Appendix contains the computer listing and a users guide for

the program that finds the optimal sample rate. The optimal sample rate

occurs when one over the condition number is a maximum. This program

uses many of the same subroutines as the program that implements OPDEC

(Appendix B). To save space, these subroutines will be discussed in

Appendix B.

The user must supply the program with the followin irformation on

data cards. All data is read in using an unformated read statement.

1. System size n, n is an intiger value and must be less

than or equal to ten.

2. Starting sample rate, DELT.

3. Final sample rate, DF.

4. A, B, and C from state matrix equation

i - Ax + Bu

y(t) - Cx(t)

A, B, and C re all n by n matrices and must be discret-

izable over sample rate range user supplied. A must also

be invertable.

Below is a brief outline of the steps the program follows:

1. Reads in data.

2. Sets DET - 0.001 and counter IS - 0.

3. Increments starting sample rate,

DELT - DELT + DET

4. Checks to see if DELT > DF; if so, goes to step 12.

AMA

I i il I .ii ''im iN i=I|



5. Discretizes A and B at sample rate DELT.

6. Increments counter IS - IS + 1.

7. Creates Hankel matrix.

8. Finds Singular values of Hankel matrix.

9. Find one over condition number,

YS(IS) - Q(n)/Q(l)

Q(n) is minimum singular value,

Q(l) is maximm singular value.

10. Sets TSS(IS) - DELT.

11. Go to step 3.

12. Search reciprocal condition number array (YS) for

maximum reciptrocal condition number and output this number.

13. Find the sample rate at which the maximum reciprocal condi-

tion number occurs and output this number.

14. Plot array YS vs array TSS.

15. Stop.

The program uses two subroutines from the T.MSL subroutine package.

The two routines are:

1. LINV2F

2. LSVDF

Description of Subroutines

Subroutine COND(F2,G2,C,N,IDIM,Q)

This subroutine takes the discretized system and creates the Hankel

matrix from the observability and controllability pairs. Then it does a

singular value decomposition of the Hankel matrix. The singular values

are then output in the subscripted array Q.

98
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Inputs

1. F2, G2, C, discretized system.

2. n, system size.

3. IDIU, Initial dimensionalization.

Outputs

1. Q, n by 1 array containing the ordered singular values

Q(l) maximum singular value,

Q(n) minimum singular value.

Subroutines EFT, HGRAGH, and VGRAGH are described in Appendix B.
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( PROGRAI THESIS(INPUTOUTPUrTAPE5=INPUTTAPE6=OUTPUr,PLOT)
DIMENS[ON AT(i0q1O)pBT(101.&),CT(i0q10)
DI1IENSION QUOD)
DI14ENS13N TSS(2500) PYS(2500)
DIMIENSION IYSS(17)
DIMENSION FT(1091*0)pGT(iO,1O)
DATA IfSS(1)/2OHONE OVER CONDIT13N
DATA IfSS(3)/20H NUMBER VS SAMPLE I
DATA IfSS(5)/2OH RATE I
DATA IYSS(7)/201
DATA IYSS(9)/20H SAMPLE RATE f
DATA IVSS~liU/2OHONE OVER CONDITION Of
DATA IYSS(13)I'.OHONE OVER CONDITION NUIBER VS SAHPUr RhTE/
Is=o

C READING IN SIZE OF MY SYSTEM N
C.N MUST BE 6ESS THAN OR EQUAL TO 10

READ', I
IDIN=l3
IPAS=O

C READ IN INtTIAL DELT
REA00,0ELT
OET=0*OO1

C READ FINAL r
READ*9,
READ', ((AT(IvJl ,J=19N) ,I=iN)

( REAO',((8T(I9J),J=lsN)vI1,14)
READ', ((CT(IJ) ,Jv19N)ip,1,N)

12 CONTINJE
IDEIT=DET +I)ELT
IF(DELrGT.DF) GOTO 96
IS=ISl.
IPAS=IDAS~l

C GENERATE MY1 DISCRETE F AND G MATRIX FOR TRUTH AND MODELO

CALL Er(ATqBTqNIOIMFTGTvN1,DELT)
CALL C34DCFT#GTpCToNP1DIMPQ)
TSS (IS) zDELT
YscrS)=a(N)/Q(:t)
IF(IPAS.GE*1O) IPAS=O
IF(IPAS@NEeO) GOTO 12
PRINTF,
PRINT49" SAMPLE RATE IS ,oTSS(IS)
PRINT09,
PRINT't ONE OVER CONDITION NUMBER IS"
PRINT',f 1/K=,PYSCIS)
GOTO 11

26 CONTINJE
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I~tS(I*GE88)GOTO 290

GOTO 299
(290 88=YSCK)

289 CONTINJE
197 COt4TINJE

PRINT09,MAX ON OVER CONDITION # 98
PRINTs'AT SAMPLE RATE OF %oTSS(C)
CALL PLOT (099-4o i-3)
CALL NSRAPH(TSSvYS9ISlZYSSfIoqI)
CALL P.OTECMI)
STOP
END

SU9ROLUtP4E COND(F2vG2$CIN#,IOIHO)
DIMENSION F2(IOItvlDIP)vG2(XOIMpIDIH)

DIMENSION CS(t10,t 10) VC (ID II!,IIDIMl)
DIMENSION RCS(10,10)
DIMENSION P(10910)
DIMENSION G? 11.),10) t 0(10) vWK (20) p 8(10,y10)
CALL COPY(CC59N9IOIl)
CALL C3PY(G2,G?,NID1M)

C FIND IWANKEL (IMPULSE RESPONSE) MATRIX.
00 1115 J1,qNql
C2(1,J) xC(19J)
C'dJt1) =G?(J,1)

1115 CONTINUE
00 1113 I2NA1
CALL MJLTfCSF2tCI,1,I4N,IDIM)
CALL MJLT(F29G7,C3qNNv1,I~tI)
00 1114 Ja1,Nt1

1114' CONTINJE
CALL COPY(CIPCSNIDI1)
CALL CODY (C3pG?# NoIDIN)

1113 CONTINUE
CALL ?fULT (C2vC4.,RC5,NNNIDIN)
lAsID111

CALL COPY(RC59PNIO1h)
CALL LSVDF(PIDZtNNs,8,"1,U1QoWCER)4
RETURN
IND

101

lift



( SUBRtOUTINE EFT(AtSN#IOIVA4,S5,M9OELT1
C THIS SUBROUTINE FIND "Y DISCRETE SYSTEM F AND 6
C FRO A ANOgo A IS NXNANDOBIS NXN
C CELT IS MY TIME INCREMENT, AND ii IS THE NUM8ER
C OF ITERATIONS IN MY SUM I WANT TO GO.

DIMENSION BtIDIM9IDIM),A (IDINIDIM)
DI'tENsiON A4(IDINpIDI~i)q5(IDIMIDIM)
DIMENSION A2(129I10 ,A3(10Coll))
DIMENSION AI(10,10)
DIMENSION AS(10, 10) AINV (10, 10)
DIMENSION 04(10,10)
DIMENSION PtIO,10)
DIMENSION WKAREA (200)

C SET UP IDENITY MATRIX
'CALL COPY (AvPNv 10110
ZA=IDIM
*IGTN
00 1902 1=19101"91
DO 1003 J=1,N,1

A'.(IqJ)'0.0

1003 CONTINUJE
AICII)zlol

1602 CONTINUE
C FINE 0 SUCH THAT F0.+I AND G=O*AIt4V*1

OETII.0D
DO 1111 1=19 91
DET1=DET10DELT
cbzC6fI
ABLEzOETI/C6
CALL MULr(AIipA9A29NNpNvIDIM1
CALL COPY (A29AINIDIM)
CALL MULTXKCA2sAeLEA3,N9NI0IM)
CALL AD0ING (A3,A4,AS, N9N ,IDIN
CALL COPY (A5,A'.,NIO1t)

1111' CONTINUE
C FIND AINV

CALL LINV2F(ANIAAINVIOGTWICAtEAPIER)
CALL MULT(A4,AINV,84,NpNphqIDIM)
CALL MULT(B4988SN9NvlvICIM)
D0 1001 r=1.,Nt1

1001 CONTINUE
CALL COPY (APNIOIM4)

o is SMY F 4 No 95 is my 6
RETURN
IENO
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SUIROUTMN PREOICT(FlgCXtNIOIHyl
C THIS suSRo'JTINE DOES THE OUTPUT PR~EDICTION
tPHASE OF OPOEC.

0111NSZON Fl(IOIHIOIM)
0I'I!NSION X(IOIHIDIt4),Y (IOIH.IDIN)
DIMENSION Z111O, 10) ,Z2(l10) R(1ofie)
SINENSION C(IOIKIOIM)

00 196 traNN791
CALL MPOOP(FlgIINIOlIR)
CALL HULT(RtXtZltHN,1,IDIH)
CALL 0lULT(CZ1,Z21t4,1.,DIM)

196 CONTINUE
RE TURN,
END

C

SUBROUTINE AOOING(A3,CqNN. lOIN)
o IS ROMP H IS COLU4N
C THIS ADDS TWO MATRICES OF SAME SIZE

DIMENSION AII,0f)1II,~t)CII,04
( 00 906 JmIH,1

DO 906 Im1,Nt1
c(iJ)ukzt IJ)*S(IJ)

966 CONTINUE
RETURN
END

C
C

SUBROUTINE Copy(ASNIDIH")
C MU1.ST BE A SQUARE MATRIX
C COPIES A INTO 8

DIMENSION A (IDIMioIN)S(oINIOINI
00 1ice JSulqK,1
DO 1100 JTuIN,1*(JStJTI uA(JSgJT)

1198 CONTINUE
RETURN
END
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SUBROUTINE PR4OtA(ANqNIcI")
C THIS SUBROUJTINE PRINTS OUT ANY SIZE 'IATRIX
C N IS THE NU49SER OF COLUMNS
C N IS T4E IW'4BER OF ROWS

t OI'ENSI1P4 A(IDINZDIN)
00 1112 juI.K,1
'WRITE(691111 (AC09Z) stale,1491)

Ill FORMIAT(" ,lO(ZXE1I.4)
1112 CONTINUE

RETURN
END

C

SUSROUTINE SIPOWP (tINPqpHIOIHR)
C FINDS RzM*vNP

9ZNENSION ?t(IDIMIDIII)#R(IDINIDIN)
DIMENSION Rl(19,1O)vRZ(1l0,0)
00 193 J811OI91
00 194 IS'10DIN,

194 CONTINUE
Ri (JJ) =1.

193 CONTINUE
00 195 JJ1,qNP,1

( CALL "'ULTMRitR29NNINIDIH)
CALL COPY(R2,RIoNtIII)

195 CONTINUE
CALL ^wOPY(R2sR9N9ZI0It)
RETURN
ENO

C
C.

SU9ROUTINE NOIZE (RHSNOTSOUTMEAN, UN)

C SUSTOUTINE NOISE CALCULATES THE VALUES OF THE NEASUREE4T 401ISE
C COMPONENTS USING A RANDOM NUMBER GENERATOR MODELLED AS ;RUSSIAN

c~~9994~9#$999. A*#*f4V
MAUSSue.
00 333 Im1,12,1
6AUSSwG4USS+RANF (ZiO)

333 CONTINUE
SAUSS. GAUSS-I. o OUTMEAN
WuaGAUSS*RMSNOTS
RETURN
ENO
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SIMU9RTINS HGRAPH(XYNICNOvNP,NS)
C IF IO(l)z.G.0C BOX IN~ UPPER RIGHT COMN.
C IS NOT PLOTTEO

DIMENSION X(l),y.(1),1DC13 S IF(NO.EO.Z) GO TO 30
IF (NO*L'.0) GO TO 10
CALL SCALE(Wo7.NolJ S CALL SCILECY,'.,Nq1)

1S. CALL PL3T(8.r-,O.9-3) 5 CALL PLOT(CE.11.93)
CALL PLOT C-1*3i,1.3% 3)
CALL PLOT(-7.13,1.3,92) S CALL PLOT(-7*15,996592)
IFQ(0(1)o.ff.~ij3) GO TO 25
CALL PLOT -7*O59*55p,3) 1 CALL PLO 9-7.051J.55921
00 20 I17,2

20 CALL SY14fL(1*e1-69997s65 V.B7,IO(I) 920)
CALL PLOT(-7.0591.55t3) S CALL PLOT(-f,0,.52
CALL PLOT (-6o05,j99.S2) S CALL PLOT (-7e095,9ei5q21
CALL PLOTC-7s15,9eA193)

25 CALL PLOT(-l@35,jeG5,2) S CALL PLOT(-193591935y2)
CALL
CALL AKIS(-l.85,2.jID(Q),-2J79.,oX(N.1),X(N+2J)
CALL AXIS(-1.8!;,2.1,IOC11),20,5e.,1SC.,Y(N+1),Y(N.2)I

30 (N,2) =-Y (N+2)
X(N41)=X(N,1)m2,s1,X(N+2) 5 Y(N,1)vY(N~j),1#6SwY(N+2j
CALL LII*E(YtXN,1,NPfhS) YN1YN1~.5YN2
X(N,1)=X(N,1),2*1*X(N42) S HlzYN11*5YN2
Y(N42) u-Y (N +2)
RETU'qN S END
suqp~ou~rmE VGRAPHCXYqN, I094ONPNS)
OIME?4Si3" X(1),(1)ID(1) S IV(NO.Efl.2) GO TO 30
IF (NO.LT.$J) GO TO 10
CALL SCALFtX0ii.9,N,1) &CALL SeAL--(Yv7*CN91)

I9 CALL PLOT(8*5,O.,-3) & CALL PLOT (osp11.,3)
CALL PLOT (-l935,1.33,3)
CALL PLDT(-79J5,193592) I CALL PLQT(-Te1599*65,21
CALL P..OT(-l933,j.'3rZ) I IF(ID(I)eM.O~k) GO TO 25
CA LL PLOT (-16 45,9 45, 3) bCALL PLOTC-3*459d!,2)
00 29 In 1,7,2

20 CALL SYOL (-3e1F 99 94 -111G,lot O CI)q.4,115)
CALL PLOT(-3945,'~.59,3) I CALL FLOT(-3@45,8.55,2)
CALL PLOT(1.*,5,8.3!,2) I CALL PLOT(-I.e599.55,2)
CALL PLOT (1*35, 9o6b,-3)

25 CALL PLOT (-19359 1 e3T2)
CALL SY4'OL(-b.6I.15.IO(13),0.&40)

CA LL AXtS(-f,.'e,61.SI(1),-20,7..9190.(N4I),Yx(N.2)I

3S X ( M+1)aX ( 4 +1)+6 94 *X 04 +2) S - T (N+I)BY M+1) -1 e &SY (N+2)
CALL LYI*(X,,I41,NPNS)
XM X(NI'(4+1) mbo**X (N+2) SY(N41) zY(4+)+1eS5fY(N#?)
RETURN 3 E'40
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Appendix 5

( OFDRC Program

This appendix contains the computer listing and a users guide for

the Implimentation of OPDEC. The program reads in user supplied inputs

and generates the initial states, x(O). The next phase is the output

prediction phase. In this phase the current system state, x(k), is used

to predict the outputs in the future. This predicted output is then

used to calculate the next input, using OPDEC's control law. The input

is then applied to the true system to update the state vector one

sample step. This updated state vector is then used in the prediction

phase on the next cycle through the program.

Progran Inputs and Initial Conditions

The user mist supply the program with the following data. All data,

unless specified otherwise, Is read In using an unformated read statement.

1. A title to be used on the output plot. This title is usually

the sample rate the system is using. It is used to identify output

plots. The title is limited to twenty spaces and read in using an

alphanumeric formst.

2. The program output contains two plots. One plot Is of the

system output and the other is of the inputs calculated. Each

plot has a title box in the upper right hand corner. This program

has the option of drawing this title box or not. The next input,

therefore, Is a switch variable. If this variable is less than or

equal to zero both title boxes will be drawn. If It is less than

me but greater than sero the title box will be drawn only on the

ontrol Input plot and not on the output plot. If the input is
greater thm ome, so title box will be drawn on either plot.
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3. System size n. n is an integer value and must be less than or

equal to ten.

4. A, B, and C from the true system state matrix equation

x=Ax+Bu

y(t) - C x(t)

A, B, C are all read in as n by n matrices and must be discretizable

at the users supplied sample rate. A must also be invertible.

5. Am, Bm, and Cm from the perturbed system state matrix equation

x - Am x + Bm u

y(t) - Cm x(t)

Am, Bm, Cm are all read in as n by n matrices and must be discret-

izable at the users supplied sample rate. Am must be invertible.

6. Sample rate DELT, which the system is to use. DELT is a real

(number.

7. The program has an option of using a smaller model than the

system order, n, in calculation of the next input. This option

is the next input to the program, N6. This tells the program the

size of the Hankel matrix to use in the calculation of the closed

loop input. N6 is an intiger and must be less than or equal to

the system size, n, and greater than or equal to 1.

8. The next input is an intiger, and tells the program the number

of cycles to implement OPDEC's control law.

9. The next input is the standard deviation of the noise one wants

to add to all the states.

10. WS is the standard deviations of the guassian noise added to

the input. If this value is less than or equal to sero, then no

-0 Input noise I added.

107

.. ...Ah. .. _ _ I - ' I



11. The next inputs are three logic switches used in making the

( program follow a path the user desires. The inputs are read in

using a logical format. The logic switches can take on two values:

a T (true) or an F (false). The first logic switch, SWI, if true

tells the program to use the true model in the prediction phase

of the program. If SWl is false, the program uses the perturbed

model in the prediction phase of the program. The second logic

switch, SW2, if true tells the program to use the true model in

the control phase of the program. If SW2 is false the program

uses the perturbed model in the control phase of the program.

SW3 is the third logic switch. If true it will add random state

noise with a standard deviation selected by the user (Input 9).

If SW3 is false no state noise will be added.

After reading in the inputs, the program discretizes the true

system and the perturbed system using subroutine EFT. The next sections

are done sequencially in the closed loop control loop.

Prediction Phase

This phase uses SWl to select which model to use in the output

prediction. The output prediction is done by using subroutine PREDICT.

Also done in this phase is to set up some titles to be drawn. These

title changes inform the user which model was used in the prediction

phase.

Control Phase

This phase uses SW2 to select which model to use in the control

phase. The output prediction is used to determine an input. This is

done by using subroutine CONTR. There are also some additional title

changes, for plotting purposes, to inform the user on the output plots

10
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which model was used in the control phase.

System Implementation

What is done in this phase is to take the input calculated, state

vector and apply them to the true system to update the state vector one

sample step. This is done by using subroutine TRUTH. Also in this

phase SW3 is used to add state noise if the user wants state noise added.

There are some additional title changes to inform the user on the output

plots if state noise, input noise or both was added.

Output Plots

After the closed loop control is done the system then plots the

sampled output versus time and control inputs versus time. The plotting

is done using subroutine HGRAPH or VGRAPH.

Major Subroutines

Subroutine CONTR (F2,2,C,Y,N,IDI,D,N6,KZ,RC15)

This subroutine uses the supplied discrete system P2, G2, C and

creates the Hankel matrix. The Hankel matrix is then inverted and is

output in RC15. This matrix is then multiplied by the output prediction

vector, Y, to determine the input D. Subroutine CONTR is called many

times during the closed loop control phase. So to save computer time

the Hankel matrix is created and inverted the first time CONTR is called

and then stored in memory, so in subsequent callings the matrix already

exists and does not need to be recomputed. N6 was described in the

input section of this appendix. IDIM is the initial dimension of

F2, G2, C and RCl5.

Subroutine PREDICT(F1,C,X,N, IDIM,Y)

This subroutine uses parts of the discrete system model, Fl, C

and state vector x to predict the output at discrete time n to 2n-1.
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These outputs are then put into vector Y. IDIM is the initial dimen-

siov of Fl, C, X, and Y.

Subroutine EFT(A,B,N,IDIM,F,G,M,DELT)

This subroutine finds the discrete system F and G, from a, n by n,

and B, n by n, at the sample rate of DELT.

M
F= I + Z Ai (DELT)i

i-i UP

where M is the number of sumations the user wants. Then G is calculated

via

c - (F - I) A l B

where I is the identity matrix. This equation is the reason why the

restriction that A and Am must be invertable was stated in the input

section of this appendix.

Subroutine MPOWP(M,NP,N,IDIM,R)

This subroutine takes matrix M, n by n, to the power of NP. Np

is an integer value. The answer is then put into matrix R. IDIM is

the initial dimension of M and R.

Subroutine TRUTH(A,B,C,DELT,D,X,IDIM,N,TSS,YS, IS,US,RMS)

This subroutine takes the input D and state vector x and applies

them to the true system, A, B, C to update the state vector one sample

rate. To insure the complete output response and help smooth output

plots the true system runs at a sample rate that is eleven times faster

than the user's selected sample rate. First the true system is

discretized using subroutine EFT, at a sample rate of DELL, where

DELL - DELT/11.0

Next, input noise is added if RHS is greater than zero. Then a white
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guassian noise will be added to the input. The noise will have a

standaru deviation of RMS. Next the system states are updated one

sample rate. Also the arrays to be plotted TSS, US, and YS are

created. IS is a counter for setting up these arrays. Then after

the state vector has been updated the time, state vector and output

are printed.

Subroutine NOIZE(RMSNOTS,OUTMEAN,WN)

This subroutine uses a random number generator to create a white

guassian noise with a standard deviation of RMSNOTS and a mean of

OUTMEAN. The noise is output in WN.

Closing Remarks

This program can only be used with a single input, single output

system. But all of the subroutines and the vital parts in the main

program are set up for a system with n inputs and n outputs. The

plotting routines are set up so that with minor modifications one can

have multi-plots per run. The program uses some subroutines from

IMSL library packages, they are LINV2F and LSVDF.

(

ill

• i . . . ... ... , q R 
- "

-'--- .. . -- - - .... ' -



PROGRA THESIS (I NPUT, OUTPUT, TAPE5 =INPUT ,TAPE6=OUTPUr t PLOT)
DIMENSION AT(1O,1o) 3T(1G91G), CT(iO910)
DIMENSION AM(i~tlG)BH(iC1PLO),CH(IOtiO)
DIMENSION XO(lOqiO)qY(1OlO)
DIMENSION X(109O),RC15(1itLo)

C MAX NUMBEPR 3F INPUTS ONE CAN CALCULATE WITH DIMENSION Or 1090
C IS 58 BECAUSE OF DIVISION BY 11 IN T4UTH SUBROUTINE

DIMENSION TSS(lCGO),YS(IOcO)qUS(IOo0)
DIMENSION IYSS(17),IDSS(17)tIZSS(i7),IXSS(17)tISSS(IT)
OIMENSI3N CONI(10,-O) ,CON2(iOlCI
DIMENSION FT(iOiD9),FH(ID,1O)tGT(IOiO) qG?(iOv1O)
COHHON/MAIN/NDINOIDIN1CONi/AI4I2/CO2/INOU/KINKOJTtKPUNCH
LOGICAL SWiSW2,SW3

C SET UP TITLES FOR CALCOMP PLOTS
DATA IYSS(i)/ZOH SAHPLEO OUTPUT
DATA IYSS(9)/20H TIME IN SECONDS I
DATA IYSS(11)/_OH SAMPLED OUTPUT f
DATA IDSS(i)120H CONTROL INPUTS I
DATA IOSS(9)/20H TIME IN SECONDS f
DATA IDSS(ii)/20H CONTROL INPUTS f
DATA IZSS(i)/20H TRUE FREDICTION f
DATA IZSS(3)/ZOH FALSE PREDICTION I
DATA IZSS(5)/2OHTRUE CONTFOL MODEL /
DATA IZSS(T)/20HFALSE CONTROL MODEL-/
DATA IZSS(9)/4OHSAMPLED OUTPUT WITH STATE NOISE ADD I
DATA IZSS(13)/4OHSAHPLEC OUTPUT WITH NO NOISE ADDEll
DATA IXSS(I)/4OHCONTROL INPUTS WITH STATE NOISE ADOED
DATA IXSS(5)/40HCONTROL INPUTS WITH NO NOTSE ADDED
DATA IXSS(9)/4OHOUTPUT WITH INPUT AND STATE NOISE A3DEO f
DATA IXSS(13)/46HCONTFEOL INPUT WITH IN0 UT AND STATE NOISE/
DATA ISSS(1)/4OHSAMPLED OUTPUT WITH INDUT NOISE ADE D
DATA ISSS(5)/4OHCONTROL INPUT WITH INPU7 NOISE ADDE3

C READING IN 4TH LINE OF UPPER RIGHT HAND BOX OF PLOTS
C USUALLY READ IN IS "SAMPLE kATE OF XXXXX"

READ(5,556) IYSS(3),IYSS(.)
556 FORMAT (iXq2A10)

IDSS (3) =IYSS(3)
IOSS() =IYSS(4)

C READ A NUMBER TO MAKE BOX IN UPPER LEFT HA40 CORNER
C OR NOT I ZZZoGT*190 THEN NO BOX IN CONTROL
C IF ZZZeGTeO. BUT*LE*1*0 THEN NO BOX IN OUTPUT PLOT,
C BUT BOX IN CONTROL PLOT

READ'0 ,7Z
IF(ZZZ.GT.O.O)IYSS(I)=O. 0
IF(ZZZ*GT.e.0)IOSS(1)-:090

C REA-ING IN SIZE OF MY SYSTEf! N
C N MUST BE LESS THAN OR EQUAL TO 10

READO, N
10114310
Z9255

N0111310
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KIN: 5

KOUT=5
XPUNCH:a

C READING IN TRUE SYSTEM IN STATE MATRIX FORM
REAO'((AT(IJ),J=1qN)vI=z-N)
READ', ((BT(IJ) ,J=pN) ,IviN)
READ*,((CT(IJ),J=1pN)t,.IN)

C READ IN PERTURBED SYSTEM IN STATE MATRIX FORM
READ', ((AM(IJ)pJ=ltN)vI=ltN)
READ4, ((F4 (IJ)9J=1,N)vIZ=1N)
REAO#,((CN (IlJ)vJ21,N)vIzltN)

12 CONTINUE
C READ IN SAMPLE RATE USED

READ', DELT
C TO STOP PROGRAM LET DELT BE 9LE.D.O

ZF(DELT.LE.O.O) GOTO 96
C READING SIZE OF HANKEL MATRIX USED IN INVERSE
C IN SUSROUTINE COHTR

READ't NS
C READING IN THE NUMBER OF TIMES YOU CALCULATE AN INPUT

REAO*'KZ
PRINT '"OELT="*D ELT

C READING R41S VALUES FOR NOISES
C FIRST IS FO.R NOISE ADDED TO STATES
C THEN NOISE ADDED TO INPUTS
C IF RMS LESS THAN ZERO NO NOISE ADDED TO INPUTS

READ', R"tSNO IS, RMS
C READ IN LOGIC SWITH FOR COMPUTATION
C SRI FOR PREDICTION SWI=TRUE USING MATRIX AT FOR PREDICT[ON
C SWI=FALSEv USING MATRIX AM FOR PREDICTION
C SW2=TRUE, USING TRUE MODEL FOR CONTROL PART OF PROBLEM
C SW2:FALSE, USING PERTURBED MODEL FOR CONTROL FART OF PR)BLEN
C SW3=TRUE9 USING NOISE IN STATE UPDATE
C SW3=FALSE 'NO NOISE BEING USED.

READ(59555) SWI9SW2,Sw3
555 FORHAr(3Li)
C SET COUNTER TO ZERO

ISu0
C GENERATE MY DISCRETE F AND G MATRIX FOR TRUTH AND MODEL SYSTEM

Mj:55
CALL EFT(AT8TN9I0IMFTpGTMIpDELT)
CALL EFT(AM,8MNN DIMFI'tGM.HM1DELT)

C GENERATE INITIAL CONDITIONS RANDOMLY
CALL RANSET(Z9)DO 1,4 , IN,1

XO (IIt) '1ORANF(Z9)
444 CONTINUE

PRINT"
PRINT'#" INITIAL CONDITIONS ARE"
CALL PRNMA(XOtNtIDIN)
PRINT ,"

C O X113 '
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00 4145 'CN11,ICZtl
C GOTO PROPER PREDICTION USING LOGIC SWITCH 41

IF (SW1) SOTO 29

IYSS (5) IZSS(4)
loss 15) :I2SS(3)
IOSS(&) =17SS(,)
PRINT','USING MODEL IIATFIX SWI IS FALSE-
CALL PRSDICT(FMPC14,XNtIOIMY)
GOTO 30

29 PRINT',t"USING TRUTH MATRIX SWI IS TRUE"
ZYSS (5) sS(1)
zYSS (6) :17ss(2)
!DSS(5) :IZSS(±)
ZOSS (6) SI7SS( 2)
CALL PRSDICT(FTCTXtNXOIMY)

30 PRINTft, MY PREDICTION IS
-CALL PRNMA(YN~iIOIM)
PRINT',"

C GOTO PROPER CONTROL USING LOGIC SWITCH,02
IF(SIIZ) GOTO 39
IYSS (7) V1Z55(7)

IOSS (7) zI 7 SS(7)
lOSS (8) 17SS(8)
PRINTf',"USIHG MODEL MATRIX FOR CONTROL SW2 IS FALSE-
CALL CONTR(FMGNCNYNIOIHDNSKNIRCI5)
SOTO 110

(39 PRINT#9,USING TRUTH MATRIX FOR CONTROL SW2 IS T RUE"
1155 (7) IzZSS (9)
IYSS (8) cI7SS(6)
IDSSUT)uI7SS(g)
IOSS(8) =1Z55(6)
CALL :O4TR(FTGTCTYNIIDDN6,KNIRC1F)

46 PRINT',"
PRINT'KY INPUT IS ,
PRINT,"$
CALL TRUTH(AT,8TCTOELT ,DXOPIDIMNTSSYSISUSRis)

C PUT IN NOISE USING. SWITCH #3
IF(RMSoLE*Do) GOTO 798
IF(SW3) SOTO 49
PRINT',"
PRINT09"rNPUT NOISE ADDED BUT NO STATE NOISE ADDED"
D0 861 N13,16,1
IYSS (K4)aISSS (KN-12)
lOSS ('N) uISSS (IN-8)

866 CONTINUE
CALL COPY(X09XpN9IDIK)
GOTO F415

,* 49 PRINT',9"
PRINT#96SO1H INPUT NOISE AND STATE NOISE ADDED"
00 66? INI3,16,1
ZYSS ('N) zIXSS (KN"4)
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IDSS(KN.) *XSS(KN)
$ 67 CONTINUE

GOTO 778
798 IFC(SW3) GOTO 799

PRINTO9,NO INPUT NOISE OR STATE NOISE AGCOED"
00 678 N13,1j6,i
TYSS('(N)u:IZSS (1N)
IOSS(KN) :IXSS(KN-8)

SY8 CONTINUE
CALL COPY(XX,0D1t)
GOTO 44%5

799 PRINT',-N0 INPUT NOISE BUT STATE NOISE ADDEO"
00 879 KN=13v16p1
IYSS(KN)=IZSS(KN-4)
IOSS(KN) *IXSS(KN-1i2)

879 -CONTINUE

778 CONTINUE
DO '446 KP=1,N,1.
OUTMEAN@0.0
CALL NOIZE(RMSNOISjOUTfEAN%4N)
'X(1(P,1)=Xe(KPli) .N

446- CONTINUE
PRXNT09,STATES AFTER NOISE ADDED"
CALL PRNMACXtNqlqIOIl)

445 PRINT',n
CALL PLOT(O.,g-i,.3)

( CALL HGROiPH(TSSqYSqISIYSS,o,1)
CALL PLOT(,-4.,-3)
CALL HGlAPif(TSSfUSISIDSSqj#O,1)
SOTO 12

96 CONTINUE
CALL PLOTECKI)
STOP
ENO
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( C

SUBROUTINE CONTR(F2,G2,CYNIOI1,0,N6,K7,RC15)
C THIS SUBROUT~INE CREATES THE HANKEL MATRIX
C AND 'USES IT FOR COMPUTING THE INPUT 4EEOED

DIMENSION F2(IOIM9IOIh),G2(IDIMtIDIM)
DIMENSION C1(10s10) ,C2(10,1O)vC3(01v1O) OC&(1O,10)
DIMENSION CS(10910) ,C(IOIPIDIN)
DIMENSI3N RC5(1O,1.)),RCi5(IDIIOI4)
DIMENSION P(10910)
DIMENSION G7C10,1O),O(l1G),HK(20),B1(1O,10)
DIMENSION Y(IOIMIOIM),U (10,10)
IF(KZ.GT*I) GOTO 666
*CALL COPY(CoC5,NtIOIM)
CALL COPY (G2,G7,NIDIM)

C FIND HANKEL (IMPULSE RESPONSE) MATRIX
00 1115 J1,tN,1
lC2(1tJ) :C(IJ)
C4' 0 J1) ZG7 Wt 1)

1115 CONTINUE
0O 1113 1=2,N,1
CALL MULT(C59F2,CI,1,N9NtIDIM)
CALL MULTCF29GTC3,NN,1,IDIM)
DO 1114 J1,tNt1
C2 (I9J) CI ( ItJ)

(C4(WJ,1)ZC 3(J9 1)
1114. CONTINUE

CALL COPY (CIPCSNPIDIH)
CALL COPY (C39GIP NtIOIH)

1113 CONTINUE
CALL MULT(C2,C*.,RC5,NNNvIDIM)
IAzIDI N
IDGTMN
PRINT4T'HANKEL MATRIX IS"
CALL PRNMA (RCqN6*N6, 101K)
CALL COPY (RCSP, NtIII)
CALL LSVDF(PIDIMNNB-l,-,QHICIER)
PRINTf,' "
PRINT0," SINGULAR VALUES OF HANKEL MATRIX-
CALL PRNMA(QN,19IDIM)
CALL GMINV(NGN6,RCSRC1PMRv5)
PRINT#9-RANK OF HANKEL MATRIX IS "qNR

66 CONTINUE
CALL OULT(RCISYUN69N6019ION)
ON-u(N691)
RETURN
ENO

11
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SIJ9ROUTIIW PREDICTCFlCjXqN9IDIHY1
C THIS SUBROUrINE DOES THE OUTPUT PR~EDICTION
C PHASE OF OPOEC.

DIMENSION FI(IOIMIO0ft3
014ENSION x(ro poitoIN Ya(oIHIoriH
DIMENSION ZI(l1Opl0),Z2(10,lI),R(1*,10)
DIMENSION CCIDIMIOIIO
M~al
NT=N*N-1
00 196 1I=N$N7,1
CALL MPOIIPCFlIINrIIHR)
CALL MULT(RX#ZINvN,1,IDI?)
CALL MULT(C9ZIZ2,1,H919IOIM)
Y(t4.yl)=Z2(1,1)

196 CONINUE
RETURN
END

C
C

SUBROUTINE ADOING(AvBCvNvM9IOI)j
C N IS ROW, " IS COLUMN
C THIS ADDS TWO MATRICES OF SAME SIZE

DIMENSION AIIDM B(DMII)CIIOK
0O 906 ju1,Ho1
W0 916 11,tNit

901 CONTINUE
RETURN
END

C
c

C
C

SUBROUTINE COPY (A vBN,1DIN)
C MUST BE A SOUARE MATRIX
C COPIES A INTO S

DIMENSION A (IDINIDIM)tB8 IDImIDZM)
DO 1100 JsmIt" I
00 1103 JTa1,N1(
9(JASJT) uA JSj JT)

1118 CONTINUE/
RETUR
END

o 117
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*#*c44#9P$#9N44#P9
C

( SUBROUTINE EFT(AqBNIO1l~qA4*B5,NDELTl
C THIS SUBROUTINE FIND "Y DISCRETE SYSTEM F AND G
C FRO A AND Be A ISNXN ANDO8IS NXN
C DELT IS MY TIME INCREMENT, AND M IS THE NUMBER
C OF ITERATIONS IN MY SUM I WANT TO G0*

DIMENSION B(IOIMviDotl) A (IOIM.IDIM)
D14ENSION A4(IDIMpID!M),85(IDIMIDIM)
DIMENSION AV2(10) A3(10,1ll
DIMENSION Al(iol10)
DIMENSION AS(1091O3 ,AINV (10. 10)

DIMENSION 84(10910)

DIMENSION NKAREA (200)
C SET UP IDENITY MATRIX

CALL COPY(APoNsID1tO
IAzIDI
IDGTuN
DO 1602 I=191DIH91
DO 1003 J=1,N,1
Al (11) =0.0
A4.(ItJ) :0.0

1003 CONTINUE
Al (1,1) s*90

1002 CONTINUE
C FINE 0 SUCH THAT FzQ.I AND G0Q*AINV*B

C631 00
DETI=190
00 1111 11,N,1i
DETizDET1*DELT

ABLE=DETlC6
CALL NULr(AItAA2,N#NvNIDIM)
CALL COPY (A29AIgNIDXH)
CALL MULTXKCA2,ABLEA3NNtIII)
CALL ADDING 03A49A5, NoN IDIM)
CALL COPY (APA49NIDIt1)

1111 CONTINUE
C FIND AINV

CALL LINV2F(ANIAAINVIDGTWCA~EAPIER)
CALL MULT(Al.,AINV9B4pNvNthIOIM)
CALL MULT(B85,NN1PICIN)
DO 1101 !119

1901 CONTINUE
CALL COPY (APoNtIOIN)

oal Is MY F.N 4o 95 ismy 6
RETURtN
eNO

Cu



C
c

SUBROUTINE TRANSP(A,8,NtIDlrn
C THIS TRANSPOSES A AND PUTS INTO S

DIMENSION ACIDIMIDIN)
DIMENSION B(IDII,.IDIN)
00 13CC JzlN,1
D0 1309 IsiNS
SCIJ)=A(JtI)

1300 CONTINUE
RETURN
END

C;
C

C;
C

SUBROUTINE HILTXK(ADCHNvioIH)
C THIS MULYPLIFS A MATRIX BY ACONSTANT

DIMENSION'ACI~,H(IDIMIDIN)ICll~om
DO 905 J1,M,1l
00 905 1=19N,1
c(jI)zA (jtI)*0

905 CONTINUE
( RETURN

END
C
C

SUBROUTINE MULT(SSTHfL,14,NIDIM)
C THIS KULTPLIES TWO 4IATRICIES TOGETHER

DIMENSION S(IOItlIDIM),ST(IDINIO1t4) ,MIDIMIOIN")
00 2006 1=1,1,1
DO20 200 KI#l,
SUM25* 9
go 2001 bj=Ll"9

SURHaSUP.S (IJ)*ST (JIK)
2031 CONTINUE

2060 CONTINUE
RETURN
ENO

C

119
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C
c-

SUBROUTINE TRUTt(A±,BICtOELT~oXIDIMN,TSSYSISUS.UIMS)
C THIS IS THE TRUE SYSTEM RESFONSE WHIZH IS RUNNING
C ELEVEN TIMES FASTR, SO THAT THE OUTPUT PLOTS ARE SMOOTH
C IT ALSO CREATES THE ARRAYS FOR CALC04P PLOTS

DIMENSION X(IDIMIDIHt4)TSS(ICOO)
DIMENSION AI(IOqlO)q9l1v10,I),C8(10,IS)
DIMENSION Z6(i9l ) ,Il 09O0
DIMENSION F3(IOIO),G3(10,1O)
DIMENSION SY(iOIO) ,YS(IOOG) ,US(1000)

OELLzDELT/iI.O
CALL EFT(AIveINIDIMF3vG39N9DELLl
DO 7S2 IPIIIIt
ISSI 5.1
IF(ISoEOoi) GOTO 48o
TSSC IS) zTSS (IS-I) +DELL
GOTO 45

i44 1SS(IS)zDELL
45 CONTINUE

S =D - - --

( IF(RMSoLEaO.O) GOTO 777
OUTMEANOo
CALL NOIE(RHSOUTMEANpWN)
S=DGWN

777 CONTINUE
WS(IS)8s

776 CON4TINUE-
CALL MULt(F39XZ6,N9NtIIIN
CALL MULYXKC(G3,BZ7,NIloINl)
CALL ADOING(ZBZ7tXNIIOIN)
CALL NULT(CSXpSYq1,NlIII)
T5(15) USY (1,1)

762 CONTINUE
PRINTf', TIME IS ,oTSSIS19 MY STATES ARIE
CALL PqNNACXtNtltlOIN)
PRINT69"
PRINT', tm. OUTPUT 1S ,YS(IS)
PRINTOP,
RETURN
Goo

Aft
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SUBROUTINE PR'IMA(ANpNICIM)
C THIS SUBROUJTINE PRINTS OUT ANYV SIZE 4ATRIX
C N IS THE NU'49ER OF COLUMNS
C N IS T'4E NU49ER OF ROWS

DIMENSION A(XOIMIOIM)
00 1112 JaIN,1

Ill FORMAT(" **91(2XE19e4))
1112 CON4TINUE

RETURN
END

C

C
C

SUSR0UTIWE MePO"P(MopNN, Of)
C FINDS RumooNp

CINENSION K(IOXMI0I4) ,KIOIN9IOIN)
OINENSION RM19109S)RZ(141)
00 113 JalIIINI
0O 194. IS19,IDINI
RIq1J)'6
*2 (IJ)as.@

19% CONTINUE
RI IJoJ) p1.

193 CONTINUE
00 1" JJuINpp1
CALL NULT (N9RlvRtNN ,NIoIK1
CALL COPY (RZ2#tItN9Ifv'M)

1I" CONTINUE
CALL :OPTfRZR9N9IOIN)
RE TURN

END TVENIENSOSOTHA01

333 ONTINE NOZ(SOTOUENI
S0U.US.U..909.9M

RESU TUN OS ACLTSiEVLE PTtNAUEET'0
viCP@eTSUNGARNO IIRGERTR OOLOAS;ISN

C*~* ** #9 999 9~* 9994*21



SUBROUTINE HGRAPH(XqYqNtIc9NOqNPqNS)
C IF ID(1)v.3oG0C BOX IN UPPEKRI~GHT CO-tN~r-
C IS NOT PLOTrEO

OIMENSION X(1),V(1)IDCI) S IF(N~sE0*2) GO TO 30
IF (NOoLV.0) GO TO IC
CALL SCALECX,?.Ho1) S CALL SCALECY,%,pNpi)

10. CALL PL3T(5.e,90993) $ CALL PLOT CCet1is 93)
CALL PLOTC(-1*3,,1*393)
CALL*PLOT-?.I391*3S,2) S CALL PLOT(-7*15,9.b~q2)
IF(I9()ff.Ct3) GO TO 2S
CALL PLOT (.7.O5#9*3fv3) 2 CALL PLOT C-7.D59T.55,2f
00 20 rzt.7.2

20 CALL SY4I L(1#.1-6Jo,.65 ,.O7,10(1),90*,?0)
CALL PLOT -. ~7!~3) S CALL PLOT( -6*0597.5,21
CALL PLO (605~,92) S CALL PLOT(C-?*05p9*%i~,2t
CALL PL0T(-?*I~,'*A~p3)

25 CALL PLOT (-10359'ot~p2) S CALL PLOT(-1.'5pl*35,2)
CALL SY4MIOL (-66.r,1e.o19.9,(131 to 4941)
CALL AK!S(-I.85,Z.1,ID(O?) -2J,?.,03. ,X(N41) ,X(N42))
CALL AXrS(-l.85,2.1,ID(11),20,9.,1l3.,Y(N.I~ ,Y(Ne2)I

30 Y(N423z-Y(N*2)

CALL LIMP(VXNIlt4PvhS)
X(N.1)xX(N.1)+2ol*X(N.2) I Y(N1)VY(N+I)-1*9YCN21
v(t42) 8-Y (N,2)
RETURN SEND
SU~,OUTTNE VGRAPH(XYpNq IDrtf0,NP9NS)
OIMENS13M X(lIY(1),IC.(i) S IWCN3.E0.21 GC TO 30
IF (W0*LT*I) 6') To 10
CALL StALF(X,.*9tN,1) &CALL SrAL9(Y,?*GCNv1,

so CALL PLOT(8*9,0.,-3) t CALL PLOT (Gos11.,3)
CALL PLOTr(-193591*315io31
CALL PLOT(-7eL5,1.3S,2) S CALL PLOTW'*1599652)
CALL P OTI-1933,9196f,2) I rF(ID(1)*Ef.0O') GO TO 25
CALL PLOT (1*49 9eitt 3) % CALL PLOTr(-3s.,S99s.52)
00 29 In 1,7,2

as CALL 5Y4"0L1-3.s,~lr#%s4 1 ,rI()1,0
CALL PL3I(-3.%5,'i.59,3) & CALL PLoT(-3.'45,e*;Sq2)'
CALL PLOf(-1*4%t~e3fvZ) I CALL PLOT(-1.05,9.55,23
CALL PL0T1-1*3%t3.Sbv3)

is CALL PL0T(-1oJ39l*3',2)
CALL VSL..4,..,1I(),., )
CALL XS.,18,C~)2,.,.XN).M.)

CALL LTN(X1r,.,1wPNS)
X44011 n't 114#0 -be %*X WE) V YN*.1 0? 41)1156Y(Not)
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